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Analytical solutions of the direct and inverse problems of nonstationary 
heat conduction in a thin semiinfinite rod are given for the case of radiative 
heat fluxes at the lateral surfaces and a partial outflow of heat by convection 
and radiation through the end of the rod. 

A long rod (0 ~ xl < ~) of small cross-sectional area is heated by a flux of intensity 
q(t~) delivered to the face x~ = 0. Part of this heat escapes through the lateral surfaces 
by convection and radiation into an external medium with constant temperature T c. The non- 
stationary temperature distribution along the rod is found from the solution of the follow- 
ing boundary-value problem: 

OT 02T ~z , ~ 
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where h = s/p is the ratio of the cross-sectional area to the perimeter of the rod (for a 
circular or square rod, h = d/4, where d is the diameter of the circle or side of the 
square). Introducing the temperature difference U(x, t) = T(x, t) -- Tc, the problem reduces 
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where 

v: (x, t) 4/T~ [T" (x, " " '  = t) ..... 1~]. 

Assuming that the thermal excitation functions q(t), f(x), w(x, t) are given, the 
temperature field inside the rod is found by applying the Fourier cosine transform to the 
x dependence of (3) and (4). Then the problem reduces to: 

U (x, 0 . f (~) exp + exp d~ 
2 V-~-{ "6 4t 4t "J t ~ ]/-~" !" 

xexp - - 4 ( t - - x )  2 _ v , ~ , [ ,  I, exp[--4Bi(t ~11 • exp , ~ii-__-~)]+exp 
o o ] / t - - ' c  

The solution of the direct problem of nonstationary heat conduction can be represented 
in terms of a functional operator H which depends on the functions q, f, and w: 

T(x, t) = H[q(t), w(x, t), [(x), x, t]. 

Then if one of the functions in H is unknown and the other two are fixed, we can work out a 
method of solving the inverse problem of finding the unknown thermal excitation function, 
given the temperature field inside the bar. 
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We consider a special case. Let ~(x) = To be the equilibrium initial distribution and 
Sk = 0. Then (5) reduces to 

d i exp[--4Bi(t--~) exp[ x2 ]q(T)d~. T(x, t)=rcW(To--r~)exp(--4Bit)  + ~ - - ~ o  V } - - 4  4 ( t ~ )  (6) 

With the help of (6) the inverse problem of recovering the delivered heat flux (the sources) 
from measuring the temperature on the surface can be worked out. Let the measured tempera- 
ture T(x, t) -- T c on the surface x = 0 be approximated by a function F(t). Putting T c = To 
in (6) and equating the right-hand side evaluated at x = 0 to F(t), we obtain 

Introducing 

F(t) d ~ expI--4Bi(t--~)] q(,)d'c. (7) 
V t -  

k (t) - -  exp (-- 4 Bi t)/V-t (8) 

we obtain a Volterra integral equation of the first kind 

d t 
F (t) - X V~-  ~I k (t - ~) q (~) d~ 

with a kernel of the convolution type. 

In the case of an insulated bar, Bi = 0 and (9) reduces to an Abel integral equation 

d ~ q (~) dr 
F (t) 

z ' 

which has the known [i] solution 

q ( t ) - d V ~ - d t  o l / t - -~  

(9) 

( i 0 )  

The solution of (9) for Bi =~ 0 is found by the Laplace transform applied to an integral 

and reduces to the form 

q ( t ) = - ~ %  {Bi i F(T)exp[--4Bi(t--T)] d~ + i exp[--4Bi(t--'c)]F'(T) i-- , 
V't -- �9 o 

which in the limit Bi -> 0 becomes 

X ~ F' (x) 
q(t) = dV~ ~} ]/t-----i-~- ~ d% 

( i i )  

and when F(0) = 0, this is equivalent to (i0). 

Let 

F (t) = r~ (t) + ~0 (t), (i2) 

where FT(t) corresponds to the exact temperature and G0(t) represents the error in measure- 
ment and the approximation to the experimental curve (noise and errors in interpolation). 
Here 8 is a small parameter and 10(t)] ~ l. Then after substitution of (12) into (ii) we 
obtain 

q (l) ~ qT (t) + Aq (l), (13) 

where 

~'~ Bi 0 (~) exp [-- 4 Bi ( t  - -  ~)1 d'c + V't - -  "c  
Aq (t) = d V~- b Vt - -  -~ 

and qT(t) is the exact heat flux found by substituting FT(t) into (ii). When the condition 
10'(t) l ~ M is satisfied, we find the following estimate for the error in recovering the 

heat flux: 

[Aq (t)] ~ ~ [(VB[ +M/V~)  err (2 U~ t )], [~ > 0, 
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from which it follows that 

l im Aq (t) = O. 
I~-~0 

Thus for a semiinfinite rod, the determination of the heat flux from the measured tem- 
perature at a single point is a correctly posed problem and this is consistent with the 
general theory of inverse heat-conduction problems [2]. We point out that if the rod is 
not insulated so that Bi ~= 0, the above calculation can be taken as a simplified method of 
solving the direct and inverse problems for a rod with a partial escape of heat through its 
surface by means of convection and radiation. Here it is necessary to use a somewhat over- 
estimated value for Bi which will account for the fraction of heat given off by radiation. 

We take q(t) =--E~T~(0, t). Then the temperature distribution inside the rod for the 
nonlinear boundary conditions of radiative heat exchange, using (5) with f(x) = To --T c = 
AT and Sk = O, reduces to 

exp [ - - 4 B i  (t - -  ~)1 exp 4 (t - -  ~) T ~ (0, "~) d'~. ( 1 5 )  C T (x, t) - -  Tc = A T  exp ( - - 4 B i  t) - -  ! 
~ V'~ .- g t - - ~  

0 

Putting x = 0, we obtain a nonlinear Volterra integral equation of the second kind for the 
function ~(t) = T(0, t): 

t 

~ ( t ) =  Te + ATexp(--4Bi t )  % l/~ead f k(t--~)r ( 1 6 )  

0 

where the kernel K(t) is determined as in (8). 

If we put Bi = 0, then we have an insulated rod, and the problem is equivalent to the 
cooling of a one-dimensional semiinfinite body which radiates heat according to the Stefan-- 
Boltzmann law from the surface x = O. This problem was first considered and solved by 
Tikhonov [3]. Equation (16) for Bi = O, and T c = To reduces to the form 

t 

r = To ~.Vi/-,~'~d [ Vt-.~'('O dT. (17) 
0 

We introduce a substitution of variables 

and new functions 

t ---- z/b 2, "~ --= ~/b 2, b = Sk/I/-~'~ = eoTaodtlV-" ~ 

0 (z) = T (0, z/bZ)/To = r (z/b2)/To, 

then we obtain a nonlinear Volterra integral equation for O(z): 

o (z) -- l-- i (D d~ 
�9 . Vz--~T, (18) 
0 

whose solution exists and is unique [3]. By introducing a new function ~(z)=O~(z) an 
approximate analytical solution of the integral equation (18) can be found by the method of 
successive approximations : 

Vz---~T (19) 
0 

In this method the iterations will give all ~0n(Z) less than ~(z) when n is even and ~an(Z) 
greater than T(z) for odd n, if we choose a first estimate %(z} which is known to be less 
than ~(z) Hence the successive approximation scheme converges to the exact solution of (18) 
from both sides. After solving (18), we substitute the value T4(0, x)= T4O~(b2x)=Tdpn(b~) 
into (15) with Bi = 0, then the temperature distribution in a semiinfinite cooling body with 
outflow of heat from the surface x = 0 according to the Stefan--Boltzmann law is 

~ d  exp 4 (t - -  ~) T 4 (0, ~) ( 2 0 )  

T (x, t) = To ~ ]/~- b g t - -  x dT. 
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The cooling of a thin rod with initial temperature To >> Tc, when there is a convective 
and radiative outflow of heat from the lateral surfaces and when the heat outflow from the 
surface x = 0 is by radiation only reduces to the integral equation (16) with Bi # O, for 
our simplified model. With no loss of generality, we put T c = 0, then using variables z, 
equation (16) reduces to 

@ (z) = exp ( - -4Bi  z/b z) - -  ~ k (z - -  ~) @ ~ (~) d~. (21)  
0 

Introducing a new function O ~(~)exp(4Bi~/~) = ~(~) , (21) becomes 

z 

~(z)=exp(--12Biz/bZ)[ 1 - -  ~ ~(~)d~ ]4 (22) j j, 
L 

0 

which gives the iteration formula 

(z) = exp( - -12Bi  z/b z) [ ~n 
k 

g ~  d~ (23) 

0 

Thus, the problem of recovering the heat flux (intensity of radiative heat outflow 
according to the Stefan--Boltzmann law from the surface x = 0 for a semiinfinite medium at 
initial temperature To, or for a rod with adiabatic conditions on the lateral surfaces 
(Bi = O) or with uninsulated lateral surfaces (Bi @ 0)) has been reduced to the solution of 
an integral equation without any additional information on the temperature variation at a 
single point. Problems of this type can be called pseudoinverse heat-conduction problems 
[2]. 

E q u a t i o n  (5)  c a n  b e  u s e d  t o  c a l c u l a t e  t h e  t e m p e r a t u r e  when t h e r e  i s  a c o n c e n t r a t e d  e x -  
p o s u r e  o f  t h e  s u r f a c e  x = 0 t o  r a d i a t i o n  a c c o r d i n g  t o  B o u g u e r l s  l aw  [ 4 ] :  

q (t) = e (t)(l -- p), (24) 

where E(t) is the irradiance (a given function of time) and p is the coefficient of reflec- 
tion; Aq = 1 -- p is the coefficient of absorption for the irradiated surface. We give the 
solutions when e(t) is a constant and an exponential. We substitute q(t) = q = E(t)(l -- 
p) = const in (5). Then for f(x) = 0, (To = Tc), and Sk = 0, the temperature distribution 
over the length of the rod for a constant heat flux has the form: 

t exp [--4Bi ( t - -  ~)1 exp 
4 (t----T) -dT. (25)  

T (x, t) = To + - ~  g t - -  T 
0 

The i n t e g r a l  on t h e  r i g h t - h a n d  s i d e  c a n  b e  e x p r e s s e d  i n  t e r m s  o f  t h e  e r r o r  f u n c t i o n  [5]  and  
the solution (25) takes the form 

T (x, t) = To q- qd/4% ~BT {exp (--2 ~ x) erfc (x/2 ~t--- 2 ~ t) -- exp (2 ~ x) erfc (x/2 ~t+ 2 g~)}. (26) 

In the limit Bi * 0, the indeterminate form % is evaluated according to L'Hospital's rule 
and the temperature distribution inside a rod with an adiabatic surface has the form 

! 
T (x, t) = To + qd/% [erfc  (x/2 1/ i--) 

which agrees with the result of [6]. 

For an exponential heat flux 

exp ~ - -  

a' 

we find 

q (t) = ~ ~t)(t - -  p) = q (1 - -  p)[l - -  exp (--vt)]  

T (x, t) = To -]- q) (x, t) - -  2q (1 - -  P) exp ( - -vt )  {exp ( - - F  4Bi - -  v x) • 
1/~ (4Bi - -  v) 

x erfc ( x / 2 g K - - V ' 4 ~ ) - e x p ( V  4Bi - -  v x) erfc (x/2 F T +  l ' r ~  )}. 

(27) 

(28) 

863 



The general problem (I), (2) with given heat fluxes q(t) can, with the help of (5), be re- 
duced to the solution of a nonlinear two-dimensional Volterra--Fredholm integral equation of 
the second kind for the temperature 

t co 

T(x,  t ) - - T ~ : q ) ( x ,  t) 2 ~--~T~Sk S j ' le(x, t, ~, .~)[T~(o~,~)__T~]d.cdo~ ' (29) 
0 0 

where 

,V(x, t)= t. t x p  [ 4(/-"~'c)] q(z)dT, 
d e [--4Bi ( t - -  ~)]exp xZ 

~)/r~ ~, l" F~--d 

i[ (x+>] [ (x~ K (x, t, ~, ,x) = exp [--4Bi (t - -  ~)] exp + exp . 
t / t  - -  "~ 4 (t - -  z) 4 (t - -  x) 

Equation (29) is written for the case f(x) = 0 (To = Tc). 

Finally, some of these solutions have been used to study the temperature distributions 
in rods heated by intense radiative fluxes from solar concentrators. An application of 
these studies is in the technology of crystal growing using solar energy. 

NOTATION 

a, thermal diffusivity; xx, coordinate along the length of the rod; tx, time; t ffi 
atx/d 2 , dimensionless time (Fourier number); x = xx/d, relative coordinate; To, initial 
temperature; o, Boltzmann constant; Sk = coTc3d/X, Stark number; Bi = ~d/l, reduced Biot 
number; E, emissivity. 
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